

DEVELOPMENT OF AN ONLINE DATABASE TOOL FOR QUICK
ACCESS TO MASS ESTIMATING RELATIONSHIPS:

GOMER – GEORGIA TECH ONLINE MASS ESTIMATION RESOURCE
ADMINISTRATOR/DEVELOPER’S GUIDE

Janssen Pimentel
Georgia Institute of Technology

Under the Academic Supervision of Dr. John R. Olds
AE 8900

April, 2004

TABLE OF CONTENTS

1.0 Overview 1

1.1 Mass Estimating Relationships (MERs) 1
2.0 Databases

2.1 Introduction 2
2.2 Architecture 2
2.3 Schema/relationships 3

3.0 MySQL DBMS
3.1 Introduction 5
3.2 Command line interpreter 5

4.0 PHP scripting language
4.1 Introduction 9
4.2 phpMyAdmin 9

5.0 GOMER database structure
5.1 Table details 15

5.1.1 mers detail 15
5.1.2 group detail 16
5.1.3 param detail 17
5.1.4 source detail 17
5.1.5 type detail 18
5.1.6 mer_param detail 18
5.1.7 ref_value detail 19
5.1.8 refvehicle detail 19

6.0 Adding an MER to the GOMER database
6.1 Updating the mers table 20
6.2 Updating the mer_param table 23
6.3 Updating the ref_value table 24
6.4 Revisiting the mers table 26

7.0 Maintenance and upgrades 27
8.0 Appendix

8.1 keysearch.php 28
8.2 browsesearch.php 30

9.0 References 32

ABSTRACT

This document describes the methods and approach used in the development of an

online database tool used for quick access to mass estimating relationships. The resulting

tool is GOMER – Georgia Tech Online Mass Estimating Resource. This tool utilizes a

typical three-tier database architecture employed by many web database applications. A

unique relationship scheme was used to preserve the complex relationships found in the

data sets. This scheme allows the user to search through the database using a variety of

methods, while returning a list of results that can be examined in further detail. MySQL

and PHP were used extensively throughout in the creation and implementation of the

GOMER database.

1

1.0 - OVERVIEW

The objective for this project is to have an easily-accessible reference tool when

performing a preliminary sizing analysis of a conceptual-level vehicle design. Though

there has already been an effort to compile mass estimating relationships (MERs) for

reusable launch vehicles (RLVs) into one downloadable volume, it was felt that placing

this information in a more intuitive, dynamic online format would be more beneficial. As

such, the previously mentioned MER information was compiled into an online database

from which a user can search for equations, compare the relationship’s predicted values

to reference values, and submit MERs for inclusion into the database.

1.1 - MASS ESTIMATING RELATIONSHIPS (MERS)

Mass estimation relationships, or MERs, are commonly used to size aerospace

vehicles in preliminary or conceptual design. These equations are typically parametric in

nature, usually with the equation parameters defining certain vehicle design properties. It

should also be mentioned that most MERs are regression fits based on limited data. In

addition, not all the MERs for a certain weight group necessarily agree with each other

due to the different data points and regression analysis with which each reference source

author used to derive the relations. However, for conceptual design, MERs have the

advantage in that they are quick and easy ways to determine the vehicle’s size with a

relatively sufficient degree of accuracy.

1.2 - GOMER

GOMER, or Georgia Tech Online Mass Estimation Resource, is a web application

tool used to search for vehicle MERs. These MERs were obtained from a previous

Master’s project and transferred to a database format. This is advantageous in that the

data in the database can be accessed by multiple users simultaneously. Another benefit to

having a dynamic database is the relative ease with which search queries are performed.

2

2.0 - DATABASES

2.1 - INTRODUCTION

A database can be defined as a collection of related data. In this case, the data in the

database are the actual equations, as well as other related information. (The relationships

between data inside the database will be discussed in more detail in a later section). As

with most databases, a typical three tier architecture was employed for this project.

2.2 - ARCHITECTURE

Like most typical web database applications, GOMER uses a three-tier architecture.

The three-tier architecture consists of the database tier, the middle tier, and the client tier.

The database tier contains the database itself and the database management system

(DBMS) used in the handling and upkeep of the database. The middle tier contains the

webserver and any scripts used to communicate between the browser and the database.

The upper tier is the client tier, which accesses the database through the webserver and

scripts in the middle tier. This architecture is presented in the figure below.

Database Tier

Database

DBMS

Middle Tier

Scripts

Scripting engine

Webserver

Client Tier

The Internet

Database Tier

Database

DBMS

Database Tier

Database

DBMS

Middle Tier

Scripts

Scripting engine

Webserver

Middle Tier

Scripts

Scripting engine

Webserver

Client Tier

The Internet

Client Tier

The Internet

Figure 2-1: A simple representation of the three-tier architecture used in web database applications
like GOMER.

3

In the simple representation depicted in the figure, a user retrieves information from

the database through the internet. In reality, the client uses the hypertext transfer protocol

(HTTP) to carry a request from the user’s browser to the webserver. Scripts on the

webserver translate the user’s request into an interpreter language that can be understood

by the DBMS, which then queries the database. Results are passed back to the DBMS, is

translated into a browser-readable format by the scripting language, which is then parsed

and viewed by the user on the web browser.

Even with a simplified architecture model, one can appreciate the complexity of the

relationship between each tier. This is compounded even more with the number of

scripts that must be run, and made even more difficult as the size and complexity of the

database increases. However, the intricacy of this process can be reduced significantly

by taking the time at the beginning to outline a proper database relationship scheme.

2.3 - RELATIONSHIP SCHEMA

The GOMER database consists of basically 3 different elements: the equations

themselves, the parameters used in the equations, and the references associated with those

equations. Those three elements are interrelated, as each reference source produces a set

of equations which have their own unique set of parameters. Not all parameters are

unique to a specific equation, however; some are common to all equations. Moreover,

these common parameters also exist in multiple reference sources. Graphically, the

relationship between these three elements is depicted in the following figure.

Equations

Parameters References

EquationsEquations

ParametersParameters ReferencesReferences

Figure 2-2: Simplified representation of GOMER database element relationships.

However, this is still a fairly basic representation of the problem. A better

relationship schema which best captures the intricacies of relationships between various

elements in the database (albeit one that is more complicated) is shown below:

4

Equations

Group

Type

Equation/Parameter

Reference Vehicle

Reference Value

Parameters
Source

Group/Parameter

Equations

Group

Type

Equation/Parameter

Reference Vehicle

Reference Value

Parameters
Source

Group/Parameter

Figure 2-3: A better schema that captures interrelationships between elements.

With this scheme, one can easily identify the interdependency of one element on

another. For instance, equations are composed of a certain set of parameters. Specific

equations belong to a certain weight group, and are applicable to a certain type of vehicle.

(The term “group” in this project refers to a weight group as defined by a weight

breakdown structure, and “type” refers to a specific vehicle type—i.e., RLV, etc.) Each

weight group contains a list of group-specific parameters, as well as common parameters

and unique equation-specific parameters. Many of the equations are associated with

multiple vehicle types. Many parameters are only associated with select groups (and not

others), while applicable to a particular set of vehicle types (through the equations)... and

so on and so forth. This is already a fairly heady example, and yet a third of the database

elements have not yet been introduced into the fray. Not surprisingly, multiple iterations

on this schema took place before the one used in GOMER was finalized.

5

3.0 - MYSQL DBMS

3.1 - INTRODUCTION

Once the relationship schema was established, the next step was the actual creation of

the database to be used in the project. There are multiple approaches to doing so; various

DBMSs exist upon which GOMER could be based on. In the end, the MySQL DBMS

was chosen due to the advantages it held over other systems:

• It is arguably the most popular DBMS used today. As such, there is a large

development community dedicated to improving this system.

• It is relatively easy to learn over other systems.

• It is comes prepackaged with Mac OS X.

• It is free.

The first bullet clearly shows the strength of using such a popular system: it most

likely won’t die anytime soon, and there are plenty of resources available for help if it

were needed. The advantage held by the third bullet was not particularly applicable for

this project, as the version of OS X installed on the server on which GOMER resides did

not have MySQL preinstalled and thus had to be manually installed. However, if and

when the server does get upgraded to the next version of X, it can be assured that the

database and its functionality will survive. Lastly, the final bullet is worth noting, if for

nothing more than simple amusement.

3.2 - COMMAND LINE INTERPRETER

MySQL is normally accessed via the command line interpreter. A short example on

how to use this interpreter to create and populate tables is described below. For further

information on how to use the command line to create and manage databases, O’Reilly’s

“Web Database Applications with PHP and MySQL” is recommended reading. At this

point, any text formatted like the following should be taken as a command line input to

be typed in by the user: command

To begin with, the user must log onto the system. Using an SSH client such as

SecureCRT, log onto ssdl20.ae.gatech.edu using the ssdl username. Enter the password

when prompted. Once logged on, the screen should show the following:

6

Figure 3-1: User ssdl logged onto host ssdl20.ae.gatech.edu.

To access the MySQL command line interpreter, type in the following at the prompt:

mysql –u merdb –p merdb

It will ask for the password, which is “merdb” (without the quotes). The window

should now be something like this:

7

Figure 3-2: Logging onto the MySQL command line interpreter.

The user is now logged onto the MySQL interpreter and working in the merdb

database. This is where management and handling of the database is performed. Data in

a database is stored in tables, and so the next step would be to create an example table

using the following commands and substituting when appropriate:

create table tablename (
id int(n),
col_1 vartype,
col_2 vartype,
primary key (id)
);

Note that the end of the command is terminated by a semicolon. Additionally, each

of the lists is separated by a comma. In other words, the command doesn’t need to be

split into multiple lines; the same command typed on one line will run just the same. For

example, if one were to type the following commands into the interpreter as such:

Figure 3-3: Creation of table farm in the merdb database using the MySQL interpreter.

A table called farm with three columns is created. This is an empty table (no rows)

with the first column labeled as the id and identified as the primary key. This primary

key would be used to relate this table to another table—in the same way that equations

8

would be related to parameters, for instance. Inserting values into the table rows is a

relatively simple task. Using the following commands it can be achieved:

insert into tablename
values (‘val_for_column1’,’val_for_column2’,’val_for_column3’);

The resulting table can then be viewed:

select * from tablename

Figure 3-4: Populating the table farm and displaying the result.

That completes the short example using the command line interpreter. While not

overly complicated, it should be noted that for a database as complex as GOMER, this

method of creating tables/inserting data may not be the most efficient. Exiting the

command line interpreter is performed by typing in quit.

9

4.0 - PHP SCRIPTING LANGUAGE

4.1 - INTRODUCTION

For this tool, PHP was the scripting language chosen to tie everything together.

Recall that scripts are contained in the middle tier of the three-tier architecture (refer to

Section 2.2) and are used to communicate between the database and the server.

Fortunately, using PHP to talk to MySQL is common practice, and as such many

resources exist that take full advantage of this relationship (see References i and ii).

Yet another advantage to using PHP is that it can be embedded in HTML code; that is,

the script can be included inside a webpage’s HTML source, much like JavaScript.

However, unlike JavaScript, a PHP script can be used to create HTML code, therefore

allowing the creation of dynamic webpages. To put this into perspective: for GOMER,

PHP is used to create the results page after a search query is run, showing a table listing

of MERs matching given search criteria.

However, one must keep in mind that PHP has limitations. Client-side scripting

languages such as JavaScript allow changes on the client’s web browser window

(mouseovers, dynamically generate forms, resize the window, etc.) PHP, on the other

hand, is not able to do those things. It is a scripting language which only executes after a

specific event occurs, such as clicking on a “Submit” button. While this is not a

particularly debilitating limitation, it is something to keep in mind when designing the

functions and features of a webpage.

GOMER uses PHP extensively in order to communicate between the user and the

database. It translates the information (i.e. – search parameters) supplied by the user’s

web browser into SQL commands, runs the query, then takes the SQL result and

generates a table of search results. Two such scripts are located in the Appendix. Still,

perhaps the best part to using PHP along with MySQL is the ability to employ

phpMyAdmin.

4.2 - PHPMYADMIN

Introduced in an earlier section was the concept of using MySQL’s command line

interpreter to create and manage databases. However, one can easily perceive that as the

10

complexity of a database increases, using a command line to manage the database can be

a rather tedious and trying task. Remember that one of the reasons that MySQL was

chosen was due to the popularity of use, and the large development community that is

associated with it. For this reason, there are multiple graphical user interfaces (GUI) out

there that simulate the functions of MySQL’s default command line interpreter. One

such GUI is phpMyAdmin. In order for a user—in this case, the GOMER

administrator/developer—would type the following web address into a browser:

http://ssdl20.ae.gatech.edu/merdb/phpMyAdmin When prompted for the username and

password, enter “merdb” for both fields (without the quotes).

Once logged on, the screen should show something similar to what is shown below.

Figure 4-1: The main phpMyAdmin screen which first greets the user after logging in.

Using this interface, one can quickly and easily search through and add to the current

database; which in this case is the merdb database. The tables that exist within this

database are listed on the webpage’s left frame, with management options listed on the

main page frame. Clicking on any of the tables (for example, farm) brings up the

following screen:

11

Figure 4-2: Screenshot of the table attributes page which allows the user to manage the selected table
in the database.

Notice that the column (field) headings for the selected table are shown. In this

example, the columns “id,” “animal,” and “sound” are listed, along with their variable

type and other attributes. Using the navigation links above, one can then choose to

browse the table (view the table’s contents), manually insert values into the table, empty

the table, or completely drop the table from the database. Word of caution: there is no

Ctrl+Z undo option when using phpMyAdmin, so take care when dropping tables or

deleting data. Clicking on the “Browse” link then allows the user to see the contents of

the table.

Inserting a new row of values can be done by clicking on the “Insert new row” link

located below the table. This is fine when adding a single, or a few, rows of data into the

table. However, for GOMER, it was determined that bulk loading the information was

the best route to take. This can easily be demonstrated using the farm table as an

example.

To begin with, a comma separated value, or .csv, file is first created. This can be

done in any number of ways—Excel, for instance, can be used. The screenshot below

shows an Excel spreadsheet containing values that will be added to the farm table.

12

Figure 4-3: Sample data to be included in the farm table.

Notice that there are three columns in the spreadsheet, just as there are three columns

in the table. The first column is associated with farm’s “id” field, the second column

with “animal,” and the third with “sound.” It is important to remember this point, as

there would inevitably be much cursing and frustration if this was neglected. The next

step is to save the spreadsheet as a .csv file. This can be done by going to File-Save As

and selecting “comma separated value” from the “Save as type” pull-down menu.

Back at the phpMyAdmin page, click on the table name that the data will be imported

into (in this instance, farm). In the main page frame, the link to insert data using a data

file is located beneath the table attributes:

13

Figure 4-4: Back at the table attributes page, bulk loading of data from a data file can be located by
scrolling down the page.

Clicking on the link then brings up the following page:

Figure 4-5: A screenshot of the data file upload page used to bulk load data into a table.

14

The .csv file can then be uploaded by clicking on the “Browse” button and locating

the file. Also, it must be noted that since the file is a comma separated file, the “Fields

terminated by” option must be changed from a semi-colon to a comma. Once this is set,

clicking the “Submit” button brings the user back to the table attributes page. Viewing

the updated contents of the table is done by clicking on the “Browse” link:

Figure 4-6: A view of the updated farm table including the sample data loaded from the .csv file.

It should also be noted that a .csv file containing all the elements of a table can be

downloaded using this tool. This procedure is as simple as going to the table attributes

page (Fig. 4-4). Notice that in Fig. 4-4 there is a bullet named “View dump (schema) of

table.” Selecting the appropriate radio buttons/checkboxes will allow the user to view the

table’s contents. All one has to do is then copy the data shown, paste it into a new .csv

file, and then the user has the complete table data on his/her local machine.

That completes a quick overview of phpMyAdmin. Further exploration into the

capabilities and functionality provided by this tool is highly recommended. Most of the

functions and features are relatively self-explanatory; however, documentation abounds

which greatly assist in understanding how to get certain things to work.

15

5.0 - GOMER DATABASE STRUCTURE

Until this point, this document gave a brief overview of the methods and approach

used in the creation of GOMER. This section will focus on specific details regarding the

GOMER database structure.

5.1 - TABLE DETAILS

All of the different database elements which were shown in the relationship schema

figure (Figure 2-3) are individual tables in the GOMER database. Each table has unique

attributes which are discussed in the following sections.

5.1.1 - MERS DETAIL

The figure below shows a screenshot of the mers table attributes as seen from

phpMyAdmin:

Figure 5-1: Table attributes of the mers table within the GOMER database.

Notice that there are ten column fields. The first is the “mer_id” and serves as the

primary key for this table—each MER in the table is assigned a unique mer_id. Two

other fields in that table are used to refer to data in other tables (in effect, used to “link”

data between tables): “type_id,” “source_id.” This ensures that the relationships between

the mers, type, and source tables are preserved. Recall that the relationship schema

presented in Section 2.2 shows that each equation is applicable to a certain type of vehicle

(via the “type_id”), and comes from a given reference source (via the “source_id”).

16

The “order” field describes in which order the equation is listed. For example,

reference source X may have 3 equations that are related to the wing group, and are listed

in a particular order. This field maintains that order when the results of the search query

are displayed. The remaining fields in this table are the “description,” “notes,” “options,”

and “filename” fields. While the first three are fairly self-explanatory, some attention

should be spent on the “filename” field.

The resulting equations that are displayed on the web browser after a successful

search are image files. As such, each equation has an associated file name which is

unique to only that equation. This filename follows this format: a.b.c-d.jpg where:

• a denotes the vehicle type—1 for RLV, 2 for expendable launch vehicles

(ELV), 3 for space transportation vehicles (STV)

• b denotes the weight group (described by the weight breakdown structure,

WBS)

• c denotes the reference source from which the equation is obtained from

• d denotes the order at which the MER should be displayed

So, for example, the second wing group equation applicable to RLVs that is obtained

from reference source 3 would be listed as 1.1.3-2.jpg. Great care must be taken to

ensure that each MER has the appropriate image filename.

5.1.2 - GROUP DETAIL

The group table is shown in the following figure:

Figure 5-2: Table attributes of the group table within the GOMER database.

17

This table refers to the vehicle weight groups, which are outlined based on a typical

vehicle WBS. The “group_id” field is serves as the primary and unique key for each

entry in the table. This key is also what is used to refer back to the MERs in the mers

table. The other two fields, “name” and “description,” describe the name and short

description associated with each weight group.

5.1.3 - PARAM DETAIL

The next table is one which contains the data regarding the different parameters used

in the MERs:

Figure 5-3: Table attributes of the param table within the GOMER database.

There are four fields in this table. The first, “param_id” is used as the unique key for

each parameter listed in the param table. The following two fields—“varname” and

“description” are text fields containing the variable name and description. Finally, each

parameter has an associated image file called by “pfile.” Unlike the “filename” field in

the mers table, the pfile follows this format: pn.jpg, where n is the unique parameter id

“param_id.”

5.1.4 - SOURCE DETAIL

Below is a figure depicting the table attributes for the source table:

Figure 5-4: Table attributes of the source table within the GOMER database.

18

Notice that there are four fields in this table: “source_id” (which is the unique key for

this table), “type_id” (which denotes which vehicle type this source is applicable to),

“label” (which denotes the source label that is displayed along with the equation in the

results page), and finally “name” which gives a name to the associated source label.

5.1.5 - TYPE DETAIL

The figure below illustrates the fields that compose the type table:

Figure 5-5: Table attributes of the type table within the GOMER database.

This is a simple table containing three fields. The first field, “type_id,” is used as the

table’s unique key. The other two tables are fairly self-explanatory.

5.1.6 - MER_PARAM DETAIL

This next table is unlike the previous tables that have been shown. Whereas the

previous tables show discrete database elements, the following table depicts the many-to-

many relationship between data contained in the mers and param tables:

Figure 5-6: Table attributes of the mer_param table within the GOMER database.

One easily notices that this table only contains two fields, both of which are the

primary keys to other tables. This table essentially defines which parameters go into

which equations. A many-to-many relationship table such as this is one proof of why a

relational database such as MySQL is useful.

19

5.1.7 - REF_VALUE DETAIL

The following figure illustrates the table attributes for the ref_value table:

Figure 5-7: Table attributes for the ref_value table within the GOMER database.

This is essentially what populates the parameter input fields when the user selects an

equation to view in more detail. It is also what is used to evaluate the selected equation.

As with most of the other tables, the first field is defined as this particular table’s primary

key. Notice that the following three fields are the primary keys of other tables, namely

the refvehicle, mers, and param tables. Again, we see the many-to-many relationship

described in the database relationship schema. The next field, “valeng,” contains the

parameter values that are displayed in the details page. These are the parameter values

associated with the selected reference vehicle geometry and configuration.

5.1.8 - REFVEHICLE DETAIL

The last table to be shown in detail is the refvehicle table:

Figure 5-8: Table attributes for the refvehicle table within the GOMER database.

This is a simple table containing three fields. As with the other tables, the first field

is the refvehicle table’s primary key. The “description” field provides a short description

each reference vehicle listed in the table, while “type_id” defines what type of vehicle it

is in addition to linking this table to the type table.

20

6.0 - ADDING AN MER TO THE GOMER DATABASE

This next section will explain how to add an MER to the database. In order to better

illustrate this procedure, the following MER will be used as an example (note: this

equation already exists in the database):

584.0

910
2375 ⎥

⎦

⎤
⎢
⎣

⎡

×
=

root

refstrZentry
wing

t

SbNM
M

The GOMER developer should make a note of the following characteristics of this

eqation: which weight group it belongs to, what source it comes from, what parameters

are associated with the equation, and which vehicle types it is applicable to. In this

particular example, the MER shown above is an equation provided by Dr. Ted Talay

which gives the wing group weight of a reusable RLV. Using GOMER’s terminology,

this MER belongs in group 1, is applicable to a vehicle of type 1, and is obtained from

source 3. The following subsections describe in detail the rather lengthy and tedious

process that should be used when adding an MER to the database.

6.1 - UPDATING THE MERS TABLE

Once the MER’s characteristics have been defined, the next step is to add the MER to

the mers table. In this case, since only one MER will be added to the database, it is not

necessary to download a .csv dump of the table data, update the .csv file, and then re-

upload the .csv file containing the new MER using the phpMyAdmin tool. For the

addition of one MER, that method is far too involved.

Instead, this example will outline how the user will add to the database using the

graphical user interface of the phpMyAdmin tool. To begin, the user would access the

tool (http://ssdl20.ae.gatech.edu/merdb/phpMyAdmin) and then proceed to log in with

the proper username and password (refer to section 4.2). Once logged in, the user will

see the welcome page as shown in Figure 4-1. Using the left sidebar, click on the mers

link to get to the mers table attributes page. Once on that page, clicking on the “Browse”

link will bring up the following page:

21

Figure 6-1: Browsing through the data contained in the mers table.

Notice that the mers table is already filled with entries. Towards the upper left

portion of the figure is a small table stating that there are 311 total rows in this table.

This is important to note, as that means that there are 311 different MERs in this table, all

with their own unique mer_id’s (section 5.1.1). One must take care to ensure that when

adding MERs, each new MER added has its own separate and unique mer_id.

(Remember that the equation used in the example already exists in the database: it is the

MER located in row 4 of this table. For the purposes of this example, a duplicate of this

MER will be added and assigned to a different mer_id).

The next step is to click on the “>>” button—doing so will lead the user to a page

showing the last few rows of the table. Doing so will do two things: 1) ensure the user

that there are indeed 311 (or however many) rows in the table, and 2) ensure that the user

will use a unique mer_id for the new table entry. Scrolling down to the bottom of the

page will reveal the “Insert new row” link. Clicking on this link will bring up the page

shown in the following figure.

22

Figure 6-2: The myPhpAdmin form used to insert data into a new row of the mers table.

Adding the necessary information is then as easy as typing them in to the appropriate

fields. For instance, the unique mer_id for this MER will be given as 312. The type,

group, and source id’s which have been previously identified for this MER will also be

appropriately filled in. Next, a brief description of the MER, as well as any notes and

options can be provided. The user should keep in mind that the keywords given to the

browsesearch.php search script will be matched against the text provided in these fields.

The “filename” field should be filled with the appropriate filename for the equation

image, as described in section 5.1.1. At this point, all the fields except “eval” should be

filled. This last field should be left empty for now—it will be revisited later. Clicking on

the “Go” button will then add the data to the table and return the user to the table

attributes page.

23

6.2 - UPDATING THE MER_PARAM TABLE

Now that the MER has been added to the database, the next step is to link the

equation with the associated parameters. This is accomplished by updating the

mer_param table. As described before, this table identifies which parameters are

associated with which MERs. For the specific example at hand, the objective is to ensure

that the following parameters are linked with this equation: bstr, Mentry, Nz, Sref, and troot.

By virtue of convenience, it so happens that these parameters already exist in the param

table—if this were not the case, then the obvious step is to add the data and other related

information to the param table, making sure to stick to the convention described in

section 5.1.3. With a quick look at the param table, one can see that the parameters listed

above have the associated param_id’s of 7, 15, 18, 26, and 28 for bstr, Mentry, Nz, Sref, and

troot, respectively. Again, the convention to follow is that when adding new data, it must

be added to the end of the table. Clicking on the “>>” button will send the user to the last

set of data in that table, and then clicking on the “Insert new row” link will ensure that

the new information will be appended to the end.

Adding a new row of data to this table is far simpler as there are only two fields to

worry about (refer to section 5.1.6 for more detail). For this example, five new rows will

be added to the table as there are five parameters in the equation. The new data is then

added as follows: for the “mer_id” field in the first row—“312” as this identifies the

given example equation, and for the “param_id” field—“7” as this identifies the first

parameter listed above, bstr. This data is saved to the table by clicking the “Go” button.

However, since there will be multiple entries added to this table, it is recommended that

the user select the “Insert another new row” radio button before clicking the “Go” button.

This option will save the current data to the table and then return the user to the “Insert

new row” page (as opposed to sending the user back to the table attributes page). The

data entry process continues until all the parameters have been entered into the table. As

a final remark, it should be mentioned that the order in which the parameters are entered

into this table should be noted, as this will come into play later.

24

6.3 - UPDATING THE REF_VALUE TABLE

The next table to which data must be added is the ref_value table (refer to section

5.1.7 for more details on this table). As before, click on the “>>” button to get to the last

set of rows, and then click on the “Insert new row” link to get to the right page. Adding

data to this table is somewhat similar to adding data to the mer_param table in that

multiple rows of data will be added. However, some care must be exercised when

entering data into the fields. This is best illustrated by looking at the figure below:

Figure 6-3: The phpMyAdmin form used to insert a new row to the ref_value table.

Apart from the “mer_id” and “param_id” fields (which are pretty self-explanatory,

and follow the same reasoning as described in the preceding section), the two most

important fields in this table are the “refvehicle_id” and “valeng” fields. Of course, last

but certainly not least, make sure that there is a unique refvalue_id associated with each

new row of data.

As described in section 5.1.7, the data in this table is used by GOMER to populate the

parameter fields when a user chooses to view an equation in more detail (see the figure

below).

25

Figure 6-4: Screenshot of GOMER’s details window for the example equation used in this section.

The next part is a fairly tricky aspect of the GOMER tool. Observe that in the page

shown above, a user has the option to evaluate the given equation using the values listed

in the parameter fields; in effect allowing the user to see the result that the MER would

provide. The values that are placed by default in the parameter fields are the result of a

query performed on the ref_value table. By default, the user will see the page above with

the parameter fields populated with Shuttle numbers (i.e. – parameter values defining the

Shuttle configuration) obtained from the data located in the “valeng” fields in the

ref_value table.

As such, the tricky part here is to identify that these values are associated with the

Shuttle; this is accomplished by entering a value of “1” in the “refvehicle_id” field of this

table. If the developer wishes to add values associated with another reference vehicle,

then the appropriate refvehicle_id would be used in place of “1” (i.e. – for the Vega RLV,

a value of “2” would be used). The “valeng” field should then contain the appropriate

parameter value (in English units).

26

6.4 - REVISITING THE MERS TABLE

The final step is to add the “actual” equation to the mers table so that it may be

evaluated when a GOMER user clicks on the “Evaluate” button shown in Fig. 6-4.

Going back to the mers table attributes page, click on the “>>” button to get to the last

row (which was just recently inserted), then click on the “Edit” link. This step fills in the

“eval” field that was left blank earlier in section 6.1.

Recall the recommendation that the order of the parameters as entered in the

mer_param table be noted. This plays a key role as this is the order at which the

parameters will be displayed in the details window (Fig. 6-4). Thus, in order to evaluate

the equation, it must be ensured that the MER matches the “actual” equation that is

evaluated by GOMER. Therefore, the following should be entered in the “eval” field,

which really does match up with the example equation given earlier in section 6.0:

2375*pow((($list[1]*$list[2]*$list[0]*$list[3])/($list[4]*pow(10,9))),0.584)

Notice that the parameters were replaced with $list[x], where x denotes a number.

With the way that the GOMER evaluate script is written, each value for each parameter is

entered into an array labeled $list. PHP, by default, starts the index for each array at 0,

and so therefore for this equation which has 5 parameters, the index runs from 0 to 4.

Again, the parameter order matters, so bstr is equivalent to $list[0], Mentry is equivalent to

$list[1], so on and so forth. This is one of the rather time-consuming portions of the

process, as it should be made sure that no errors have been made and that the proper

syntax is used. (For help on mathematical functions used in PHP, please refer to the PHP

homepage, or to any of the references listed at the end of this report).

Completion of this step finishes the process and adds the MER to the database.

27

7.0 - MAINTENANCE AND UPGRADES

In closing, a few words should be spent on the process of maintaining and future

upgrading of GOMER’s database. Only routine checking is needed to make sure that the

MySQL server is up and running. During the installation of the MySQL package, an

application was installed and set up such that MySQL would automatically start up if the

server were to ever reboot. If that application somehow fails to restart the MySQL server,

a simple command in the OS X shell command line is all that is needed to get the server

up and running.

As far as submissions of new MERs to be included in the database, all that needs to

be done is to append the appropriate information into each of the tables described in the

preceding sections. Updating the data in each of the tables contained within is as simple

as downloading the table data into a .csv file, editing the file, and re-uploading the file to

the table using phpMyAdmin.

Lastly, to address concerns about updating the MySQL software: upgrading to a new

version should not destroy any functionality that is served by GOMER. This is because

no real “exotic” commands were used to create GOMER, and as such the features

provided by GOMER should be preserved. Additionally, as with any questions or

concerns regarding MySQL or PHP, a quick visit and search through their online

documentation should provide the needed answers.

28

8.0 - APPENDIX

8.1 - KEYSEARCH.PHP SOURCE CODE

The following is the PHP source code used to perform the keyword search method.

Using the first form in the search page, it takes in two arguments: the search terms (as a

string), and the search location.

<?php
…
 // Run SQL query: search param.varname and output
relevant eqns
 $query = "select m.group_id,
 m.source_id,
 m.description,
 m.mer_id,
 m.filename,
 s.label
 from mers m, param p, mer_param mp, source s
 where m.mer_id = mp.mer_id
 and p.param_id = mp.param_id
 and m.source_id = s.source_id
 and match($search) against ('$description')
 group by m.mer_id, m.group_id, m.source_id";

// Open connection to DBMS
if (!($connection = @ mysql_connect("localhost", "merdb",
"merdb")))
 die("Could not connect to the database!");
if (!(mysql_select_db("merdb", $connection)))
 showerror();

// Run the query above
if(!($result = @mysql_query($query, $connection)))
 showerror();

// Find out how many rows in the result
$rowsfound = @mysql_num_rows($result);

// Check for data
if($rowsfound != 0)
{

echo "\n" .
 $rowsfound .
 " records were found matching your query.

";

// Create the output table
echo "\n<table border=\"0\" align=\"center\" width=\"100%\">";

// Process the output data

29

while ($row = @ mysql_fetch_array($result))
{
 // Print heading
 echo "\n<tr>\n\t<td bgcolor=\"gray\">" .
 "" .
 $row["description"] . " - " .
 "Group" . " " .
 $row["group_id"] . ", " .
 "Source" . " " .
 $row["label"] .
 "</td>\n</tr>";

 // Link to parameter listing
 $eqn = $row["mer_id"];
 $name = $row["filename"];
 echo "\n<tr>\n\t<td bgcolor=\"silver\">" .
 "" .
 "<a href=\"paramlist.php?m_id=$eqn&img=$name\" " .
 "style=\"text-decoration:none\" target=\"new\">" .
 "View Details" .
 "</td>\n</tr>";

 // Show the equation image
 echo "\n<tr>\n\t<td bgcolor=\"white\">" .
 "<img src = \"eqns/" .
 $row["filename"] .
 "\">" .
 "</td>\n</tr>";

 // Blank rows for formatting
 echo "\n<tr>\n\t<td>
</td>\n</tr>";
}

echo "\n</table>\n";

} // End if rowsfound!= 0
else
{
 echo "
No results found matching your criteria.\n";
}

// Create link back to search page
echo "
<a href=\"search.html\" " .
 "style=\"text-decoration:none\">" .
 "Back to search
";

if(!(mysql_close($connection)))
 showerror();
…
?>

30

8.2 - BROWSESEARCH.PHP SOURCE CODE

The following is the PHP source code used to perform the browse search method.

Using the second form in the first page, it takes in three arguments: the vehicle type, the

weight group, and the reference source in which to conduct the search query.

<?php
…
 // Run SQL query: search param.varname and output
relevant eqns
 $query = "select m.group_id,
 m.source_id,
 m.description,
 m.mer_id,
 m.filename,
 s.label
 from mers m, param p, mer_param mp, source s
 where m.mer_id = mp.mer_id
 and p.param_id = mp.param_id
 and m.source_id = s.source_id";

 if ($browsetype != "All")
 $query .= " and m.type_id = $browsetype";
 if ($browsegroup != "All")
 $query .= " and m.group_id = $browsegroup";
 if ($browsesource != "All")
 $query .= " and m.source_id = $browsesource";
 $query .= " group by m.mer_id, m.group_id, m.source_id";

// Open connection to DBMS
if (!($connection = @ mysql_connect("localhost", "merdb",
"merdb")))
 die("Could not connect to the database!");
if (!(mysql_select_db("merdb", $connection)))
 showerror();

// Run the query above
if(!($result = @mysql_query($query, $connection)))
 showerror();

// Find out how many rows in the result
$rowsfound = @ mysql_num_rows($result);

// Check for data
if($rowsfound != 0)
{

echo "\n" .
 $rowsfound .
 " records were found matching your query.

";

31

// Create the output table
echo "\n<table border=\"0\" align=\"center\" width=\"100%\">";

// Process the output data
while ($row = @ mysql_fetch_array($result))
{
 // Print heading
 echo "\n<tr>\n\t<td bgcolor=\"gray\">" .
 "" .
 $row["description"] . " - " .
 "Group" . " " .
 $row["group_id"] . ", " .
 "Source" . " " .
 $row["label"] .
 "</td>\n</tr>";

 // Link to parameter listing
 $eqn = $row["mer_id"];
 $name = $row["filename"];
 echo "\n<tr>\n\t<td bgcolor=\"silver\">" .
 "" .
 "<a href=\"paramlist.php?m_id=$eqn&img=$name\" " .
 "style=\"text-decoration:none\" target=\"new\">" .
 "View Details" .
 "</td>\n</tr>";

 // Show the equation image
 echo "\n<tr>\n\t<td bgcolor=\"white\">" .
 "<img src = \"eqns/" .
 $row["filename"] .
 "\">" .
 "</td>\n</tr>";

 // Blank rows for formatting
 echo "\n<tr>\n\t<td>
</td>\n</tr>";
}

echo "\n</table>\n";

} // End if rowsfound!= 0
else
{
 echo "
No results found matching your criteria.\n";
}

// Create link back to search page
echo "
<a href=\"search.html\" " .
 "style=\"text-decoration:none\">" .
 "Back to search
";

if(!(mysql_close($connection)))
 showerror();
…
?>

32

9.0 - REFERENCES

i. Lane, David, Williams, Hugh E., “Web Database Applications with PHP and

MySQL,” O’Reilly, CA, 2002
ii. Ullman, Larry, “PHP for the World Wide Web,” 2nd Edition, Peachpit Press, CA,

2004
iii. Rohrschneider, Reuben R., “Development of a Mass Estimating Relationship

Database for Launch Vehicle Conceptual Design,” AE 8900 Paper, Georgia
Institute of Technology, April, 2002

